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Abstract
We perform a rigorous computation of the spin and charge density correlations
of the 1d repulsive Hubbard model at weak coupling, focusing on the properties
of the Fourier transform at momentum 0 and ±2pF , if pF is the Fermi
momentum. We prove that the interaction changes the singularity at ±2pF

(the discontinuity in the derivative becomes a power law singularity) while the
singularity at 0 is essentially unchanged. Our results show that the logarithmic
divergences at zero momentum recently found in [7], which would be in contrast
with Luttinger liquid behaviour, are indeed spurious.

PACS numbers: 71.10.Pm, 71.10.Fd, 05.10.Cc, 74.20.Mn

1. Introduction

In some recent papers, see [5–7], the spin and charge density correlations in the 1d repulsive
Hubbard model have been considered from a renormalization group (RG) point of view.
In particular, it has been found in [7] that the interaction apparently produces logarithmic
divergences at zero momentum (see (15), (16) of [7]), which would be in contrast with
the expected Luttinger liquid behaviour of the 1d Hubbard model. Aim of this paper is
to rigorously compute the spin and charge density correlations, and to prove that there are
indeed no logarithmic divergences at zero momentum in the spin or charge correlations; their
appearance in [7] is just an artefact due to the approximations involved in the analysis.

The Hamiltonian of the 1d Hubbard model with non-local interaction is

H = −1

2

∑
x∈�,σ

(
a+

x,σ a−
x+1,σ + a+

x+1,σ a−
x,σ

)
+ U

∑
x,y∈�
σ,σ ′

v(x − y)a+
x,σ a−

x,σ a+
y,σ ′a

−
y,σ ′

−µ
∑

x∈�,σ

a+
x,σ a−

x,σ , (1)

where � is an interval of L points on the one-dimensional lattice of step 1, which will be
chosen equal to (−[L/2], [(L − 1)]/2) and a±

x,σ is a set of fermionic creation or annihilation
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operators with spin σ = ± satisfying periodic boundary conditions; U > 0 is the coupling,
v(x − y) is a short range interaction and µ is the chemical potential.

We consider the operators a±
x,σ = eHx0a±

x,σ e−Hx0 , x = (x, x0) and x0 will be called time
variable. Many physical properties of the fermionic system at inverse temperature β can be
expressed in terms of the Schwinger functions, that is the truncated expectations in the grand
canonical ensemble of the time-order product of the field a±

x,σ at different spacetime points. If

〈X〉L,β = T r e−βH X

T r e−βH
, (2)

the Schwinger functions are defined as, if ε = ± and x0,1 � x0,2 � · · · � x0,n,

SL,β(x1, ε1, σ1; . . . ; xn, εn, σn) = 〈
aε1

x1,σ1
· · · aεn

xn,σn

〉
L,β

(3)

and limL,β→∞ SL,β = S. The charge and spin density correlation functions are given by, if
x0 � y0,

Nε
L,β(x − y) = 〈

ρε
xρ

ε
y

〉 − 〈
ρε

x

〉〈
ρε

y

〉
, (4)

where ε = 0, 1, ρ0
x = 1√

2

∑
σ=± a+

x,σ a−
x,σ is the charge density and ρ1

x = 1√
2

∑
σ=± σa+

x,σ a−
x,σ

is the spin density. We also define the static correlation functions as

Sε
L,β(x) = Nε

L,β(x)|x0=0+ . (5)

If there is no interaction U = 0, the two-point Schwinger function g(x − y) is given by

g(x − y) = 1

βL

∑
k∈D

e−ik(x−y)

−ik0 + µ − 1 + cos k
, (6)

with k = (k0, k),D ≡ DL×Dβ , withDL ≡ {k = 2πn/L, n ∈ Z,−[L/2] � n � [(L−1)/2]}
and Dβ ≡ {k0 = 2(n + 1/2)π/β, n ∈ Z}. The density correlations for U = 0 are given by

Nε
0 (x) = g(x)g(−x), (7)

and the static density correlations for x 	= 0 can be written as

Sε
0(x) = 1

2π2x2

(
1 + cos 2p0

F x
) [

1 + O

(
1

|x|
)]

, (8)

where µ = 1 − cos p0
F . Note that the dominant part of Sε

0(x) has an oscillating and a
non-oscillating part, both decaying as O(x−2) for large x.

Denoting by Ŝε
0(k) the Fourier transform of Sε

0(x), we get, if ε(k) = 1 − cos k − µ,

Ŝε
0(k) =

∫ π

−π

dpχ(ε(p) < 0)χ(ε(p + k) > 0), (9)

that is, if p0
F � π

2 for definiteness

Ŝε
0(k) = |k| |k| � 2p0

F 2p0
F π � |k| � 2p0

F . (10)

The first derivative is then discontinuous, that is ∂kŜ
ε
0(k) = 1 for 0 � k � 2p0

F , ∂kŜ
ε
0(k) = −1

for −2p0
F � k � 0 and 0 otherwise.

As the spin and charge density correlations are directly linked to experiments, one is
interested in what happens to such quantities when the interaction is switched on, especially
close to 0,±2pF where singularities are present. Such problem has been deeply investigated
in the literature but no definite conclusions have been reached.

The classical perturbative renormalization group (RG) analysis in [13] shows that the
repulsive Hubbard model has an attractive fixed point, up to third order in the perturbative
expansion, in correspondence with the Mattis model [9], a solvable generalization to spinning
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Figure 1. ∂kŜ
ε
0(k) as a function of k; there are jumps at k = 0,±2p0

F , and the function is
2π periodic.

fermions of the Luttinger model solved in [10] and describing chiral fermions with linear
dispersion relations. The Mattis model does not contain the most general interaction between
spinning fermions, as the backward interactions are not included; they are instead present in
the Hubbard model.

From the exact solution one can see, [1], that in the Mattis model the behaviour of the
spin or charge density correlations for momenta close to 2pF or 0 is quite different: in the
first case the behaviour is anomalous with the appearance of a nontrivial critical index, while
in the second case such behaviour is unaffected by the interaction.

Regarding the behaviour of the density correlations of the 1d Hubbard model, it is
reasonable to guess that the behaviour close to 2pF of the density correlations should be
qualitatively the same as in the Mattis model: the nonvanishing critical index should not be
cancelled by the presence of (dimensionally or marginal) irrelevant terms in the RG sense.

Much more delicate is, in contrast, the situation at zero momentum. The fact that the
corresponding critical index is vanishing in the Mattis model is related, see [4, 11, 12], to
the validity of certain ward identities based on symmetries under separate chiral and spin
phase transformations which are however not valid in the Hubbard model, for the presence
of backward interactions. It is true that iterating the RG the backscattering interactions are
vanishing; however their convergence to zero is quite slow (non-summable) and this could
produce a logarithmic divergence in the flow of the density renormalization, as is found in
[7], unless suitable cancellations at all orders are found. On the other hand, the presence
of logarithmic divergences would be in striking contrast with the metallic Luttinger liquid
behaviour expected in the 1d repulsive Hubbard model.

New techniques based on a combination of exact RG methods with ward identities
(modified by the presence of cut-offs) have been developed in [2, 3] for the analysis of
interacting spinless fermions and extended to the Hubbard model in [8]; we apply such
methods to study the spin and charge correlations of the 1d Hubbard model, proving the
following result.

Theorem. If p0
F 	= π

2 , v̂(0) > v̂(2pF ) and v̂
(
2p0

F

)
U > 0 and small enough, if ε = 0, 1 the

static spin and charge density correlations can be written as

Sε(x) = cos(2pF x)
1 + A1,ε(x)

2π2x2−ηε
+

1 + A2,ε(x)

2π2x2
+ O

(
1

|x|2+ϑ

)
, (11)

where |Ai,ε(x)| � CU,C1U � ηε � C2U , C,C1, C2, ϑ are positive constants.
The correlations Ŝε(k) are bounded for all k ∈ [−π, π ], while their first derivatives

∂kŜ
ε(k) are bounded for all k 	= ±2pF . At k = ±2pF , ∂kŜ

ε(k) diverges as |k − (±2pF )|−ηε

and close to k = 0, we can write

Ŝε(k) = Ŝε
0(k) + Uhε(k) (12)

with |hε(k)|, |∂kh
ε(k)| � C.
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Figure 2. ∂kS
ε(k) as a function of k; there is a jump at k = 0 and a divergence at ±2pF .

By comparing (8) with (11) we see that the oscillating part of the interacting density
correlations has a different power law decay with respect to the free case, in contrast to what
happens to the non-oscillating part.

Moreover, at k = 0, Ŝε(k) has a cusp and ∂kŜ
ε(k) has a finite discontinuity; the only effect

of the interaction is to change the opening angle of the cusp and the width of the discontinuity,
and no logarithmic divergences at zero momentum appear. In contrast, the interaction changes
radically the singularity of Ŝε(k) at 2pF : the first derivative has a power law divergence. For
all other values of k, the static correlations and its first derivatives are continuous; possible
singularities Ŝε(k) or ∂Ŝε(k) at k 	= (0,±2pF ) can possibly appear only at strong coupling.

The above theorem is proved in sections 2 and 3; in particular in section 2 we perform
a multiscale analysis of the density correlations, and in section 3 we prove the cancellations
related to the behaviour at zero momentum; section 4 is devoted to the conclusions.

2. Exact renormalization group approach

2.1. Grassmann integrals

We introduce two finite sets of anticommuting Grassmanian variables
{
ψ̂±

k,σ

}
and

{
dψ̂±

k,σ

}
, k ∈

D and σ = ±, and we define an operation (Grassmann integration) in the following way:∫
ψ̂±

k,σ dψ̂±
k,σ = 1

∫
dψ̂±

k,σ = 0. (13)

We also define the Grassmanian field ψ±
x,σ as ψ±

x,σ = 1
Lβ

∑
k∈D ψ̂±

k,σ e± ikx. The density
correlations of the Hubbard model can be obtained from a generating function Wε, ε = 0, 1
depending if the charge or spin correlations are considered, expressed by the following
Grassmann integral:

eWε(φ) =
∫

P(dψ) e−V(ψ)+
∫

dxφx,ε
1√
2

∑
σ=±(σ )εψ+

x,σ ψ−
x,σ , (14)

where P(dψ) is the fermionic integration

P(dψ) =
[∏

σ=±

∏
k∈D

dψ̂+
k,σ dψ̂−

k,σ

]
exp

[
− 1

βL

∑
σ

∑
k∈D

ψ̂+
k,σ (−ik0 + cos pF − cos k)ψ̂−

k,σ

]
,

(15)

and the interaction V is

V(ψ) = ν
∑

σ

∫
dxψ+

x,σ ψ−
x,σ + δ

∫
dxtx,yψ

+
x,σ ψ−

x,σ

+ U
∑
σ,σ ′

∫
dx dyv(x − y)ψ+

x,σ ψ−
x,σ ψ+

x,σ ′ψ
−
x,σ ′ , (16)
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where
∫

dx ≡ ∫ β

2

− β

2

dx0
∑

x∈�,U > 0 (we are choosing v̂(2pF ) > 0 for definiteness),

tx,y = 1
2δy,x+1 + 1

2δx,y+1 − cos pF and v(x − y) = δ(x0 − y0)v(x − y). ν, δ are counterterms
introduced in order to take into account that the interaction changes the value of the Fermi
momentum and of the Fermi velocity with respect to the non-interacting case. Finally, φx,ε

are external fields.
The density correlations are given by

Nε(x − y) = ∂2Wε

∂φx,ε∂φy,ε

|φ=0. (17)

Our exact RG computation of the Hubbard model correlation functions is based on some
elementary properties of Grassmann integrals, which we briefly recall.

(1) Addition property. If P(dψ(1)) and P(dψ(2)) are fermionic integrations with
propagator g1 and g2, for any analytic function F it holds∫

P(dψ)F(ψ) =
∫

P(dψ(1))

∫
P(dψ(2))F (ψ(1) + ψ(2)), (18)

where P(dψ) has propagator g = g1 + g2.
(2) Invariance of exponentials. If φ is a Grassmann variable∫

P(dψ) eV (ψ+φ) = e
∑∞

n=1
1
n! E

T (V ;n) ≡ eV ′(φ), (19)

where ET (V ; n) is the truncated expectation with respect to P(dψ), that is the sum over all
the connected Feynmann graphs obtained from n interactions V .

(3) Change of integration. If Pg(dψ) denotes the fermionic integration with covariance
g, ∫

Pg(dψ) e
∫

dkν(k)ψ+
k ψ−

k F(ψ) = N
∫

P(g−1+ν)−1(dψ)F(ψ). (20)

2.2. Multiscale analysis

Let T 1 be the one-dimensional torus, ‖k −k′‖T 1 the usual distance between k and k′ in T 1. We
introduce a scaling parameter γ > 1 and a positive smooth function χ(k′), k′ = (k′, k0),
such that χ(k′) = 1 if |k′| < t0 ≡ a0v0/γ and χ(k′) = 0 if |k′| > a0v0, where

|k′| =
√

k2
0 + (v0‖k′‖T 1)2 and a0 = min{pF /2, (π − pF )/2}, v0 = sin pF . The above

choice is such that the supports of χ(k − pF , k0) and χ(k + pF , k0) are disjoint and the C∞

function on T 1 × R:

fu.v.(k) ≡ 1 − χ(k − pF , k0) − χ(k + pF , k0) (21)

is equal to 0, if [v0‖(|k| − pF )‖T 1 ]2 + k2
0 < t2

0 . We define

g(x − y) = g(u.v.)(x − y) + g(i.r.)(x − y) (22)

with

g(u.v.)(x − y) = 1

Lβ

∑
k∈D

e−ik(x−y) fu.v.(k)

−ik0 − cos k + cos pF

(23)
g(i.r.)(x − y) = 1

Lβ

∑
ω=±

∑
k∈D

e−ik(x−y) χ(k − ωpF , k0)

−ik0 − cos k + cos pF

≡
∑
ω=±

g(�0)
ω (x − y),

where g(u.v.)(x − y) is the ultraviolet part of the propagator while g(i.r.)(x − y) is the infrared
part; f̂u.v.(k) has support far from the points (0,±pF ) in which the free propagator is singular
while 1 − f̂u.v.(k) has support around the two points (0,±pF ).
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We introduce two Grassmann variables ψ(i.r.), ψ(u.v.) with propagators g(i.r.)(x − y),

g(u.v.)(x − y) and, by the addition property (18), we can write (14) as

eWε(φ) =
∫

P(dψ(i.r))P (dψ(u.v))

× e−V(ψ(i.r)+ψ(u.v))+ 1√
2

∫
dxφx,ε

∑
σ=±(σ )ε(ψ

(i.r.)+
x,σ +ψ

(u.v.)+
x,σ )(ψ

(i.r.)−
x,σ +ψ

(u.v.)−
x,σ )

, (24)

and we can integrate ψ(u.v.) obtaining, by (19),

eWε(φ) = eS(1)(φ)

∫
P(dψ(i.r.)) e−V(0)(ψ(i.r.))+B(0)(ψ(i.r.),φ) (25)

where S(1)(φ),V(0)(ψ(i.r.)) and B(0)(ψ(i.r.), φ) are sums over monomials in φ,ψ(i.r.) and
ψ(i.r.), φ respectively multiplied by kernels bounded and fast decaying; such regularity
properties of the kernels are due to the fact that g(u.v.)(x − y) is fast decaying for large
distances, as a consequence that f̂ u.v.(k) has support far away from the points (0,±pF ) in
which the denominator of ĝ(u.v.)(k) vanishes.

We write now, setting k = k′ + ωpF , k′ = (k′, k0):

g(i.r.)
ω (x − y) = eiωpF (x−y)g(�0)

ω (x − y), (26)

where

g(�0)
ω (x − y) =

0∑
h=−∞

g(h)
ω (x − y) (27)

and

g(h)
ω (x − y) = 1

Lβ

∑
k′∈D

e−ik′(x−y) fh(k′)
−ik0 − cos(k′ + ωpF ) + cos pF

(28)

and fh(k′) = χ(γ −hk′) − χ(γ −h+1k′) and χ(k′) = ∑0
h=−∞ fh(k′); finally we define

C−1
h (k′) = ∑h

k=−∞ fk(k′). Note that in the support of fh(k′) the denominator of ĝ(h)
ω (k′)

is O(γ h).
We can introduce two Grassmann variables ψ

(�0)
+ , ψ

(�0)
− with Grassmann integration

P
(
dψ

(�0)
+

)
, P (dψ

(�0)
− ) and propagators g

(�0)
+ (x−y), g

(�0)
− (x−y); by using again the addition

property (18), we can rewrite (29) as

eWε(φ) = eS1(φ)

∫
P

(
dψ(�0)

+

)
P

(
dψ

(�0)
−

)
e−V(0)(ψ

(�0)
+ ,ψ

(�0)
− )+B(0)(ψ

(�0)
+ ,ψ

(�0)
− ,φ), (29)

where V(0)(ψ
(�0)
+ , ψ

(�0)
− ) andB(0)

(
ψ

(�0)
+ , ψ

(�0)
− , φ

)
are obtained from V(0)(ψ(i.r.)) and

B(0)(ψ(i.r.), φ) by the replacement

ψ±(i.r.)
x,σ →

∑
ω=±

e± iωpF (x−y)ψ(�0)
x,ωσ . (30)

Remark. After the integration of ψ(u.v.) one finds, see (29), that the system can be expressed
in terms of chiral fields ψ±

ω,σ , where ω = ±, with approximately linear dispersion relation
and an ultraviolet cut-off; this exact representation, based on the properties of Grassmann
variables, substantiates the standard approximation of the Hubbard model with the g-ology
model, see [13].

The analysis of (29) is done by a multiscale analysis based on the decomposition (27).
Physically, g(h)

ω (x − y) represent the propagator ‘at scale γ h’ and for any integer N and any
h � 0: ∣∣g(h)

ω (x − y)
∣∣ � γ h CN

1 + (γ h|x − y|N . (31)
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From the above bound we see that the scaling dimension of the fermionic fields is 1/2 and
of the external field J is 1; hence

∫
dxψ+ψ− has scaling dimension −1 (relevant terms),∫

dxψ+ψ−ψ+ψ− or
∫

dxφψ+ψ− have dimension 0 (marginal terms) and all other terms have
positive scaling dimension (irrelevant terms).

It is convenient to decompose g(h)
ω (x − y) as

g(h)
ω (x − y) = g

(h)
ω,L(x − y) + r(h)

ω (x − y), (32)

with

g
(h)
ω,L(x − y) = 1

βL

∑
k′∈D

e−ik′(x−y) fh(k′)
−ik0 + ωk′ (33)

and ∣∣r(h)
ω (x − y)

∣∣ � γ 2h CN

1 + (γ h|x − y|N , (34)

that is r(h)
ω (x − y) has an extra small factor γ h in the bound; note that g

(h)
ω,L(x − y) is the

propagator of Luttinger fermions with linear dispersion relation and bandwidth cut-off.
The multiscale integration of (29) can be done in an iterative way; assume that we have

integrated the scales 0,−1, . . . , h + 1 and that we have found, up to a constant

eS(h+1)(φ)

∫
PZh,Ch

(dψ�h) e−V(h)(
√

Zhψ
(�h))+B(h)(

√
Zhψ

(�h),φ), (35)

where Z0 = 1, PZ0,C0(dψ�0) = P
(
dψ

(�0)
+

)
P(dψ

(�0)
− ),V(h)(

√
Zhψ

(�h)) = V(0)
(
ψ

(�0)
+ ,

ψ
(�0)
−

)
,B(0)(ψ(�0), φ) = B(0)

(
ψ

(�0)
+ , ψ

(�0)
− , φ

)
and, if c0 = cos pF

PZh,Ch
(dψ(�h)) =

[∏
k′∈D

∏
ω,σ=±

dψ̂
+(�h)

k′,ω,σ dψ̂
−(�h)

k′,ω,σ

]

× exp

{
− 1

βL

∑
ω,σ=±

∑
k′∈D

ZhCh(k′)ψ̂+(�h)

k′,ω,σ (−ik0 + ωv0 sin k′

+ c0(cos k′ − 1))ψ̂
−(�h)

k′,ω,σ

}
, (36)

with

V(h)(ψ(�h)) =
∞∑

n=1

∑
ω,σ

∫
dx

2n∏
i=1

ψ(�h)εi

xi ,ωi ,σi
W

(h)
2n,σ ,ω(x);

S(h+1)(φ) =
∞∑

m=1

∫
dxS(h+1)

m (x)

m∏
i=1

φ(xi ) (37)

B(h)(ψ(�h), φ) =
∞∑

m=1

∞∑
n=1

∑
σ ,ω

∫
dx dyB

(h)

m,2n;ω,σ (x, y)

m∏
i=1

φxi
(xi )

2n∏
i=1

ψ(�h)εi

yi ,ωi ,σi
.

We split the effective potential V(h) as LV(h) +RV(h), where R = 1−L and L, the localization
operator, is a linear operator defined by its action on the kernels Ŵ

(h)
2n,ω (we denote by Ŵ

(h)
2n,ω

the Fourier transform of W
(h)
2n,ω) in the following way:

(1) if 2n = 4, we define

LŴ
(h)
4,σ ,ω(k′

1, k′
2, k′

3) = δ∑
i εiωi

Ŵ
(h)
4,σ ,ω(0, 0, 0); (38)
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(2) if 2n = 2, (in this case there is a non-zero contribution only if ω1 = ω2)

LŴ
(h)
2,σ,ω(k′) = Ŵ

(h)
2,σ,ω(0) + k0∂k0Ŵ

(h)
2,σ ,ω(0) + (ωv0 sin k′ + c0(cos k′ − 1))∂k′Ŵ

(h)
2,σ ,ω(0), and

(39)

(3) in all the other cases,

LŴ
(h)
2n,σ ,ω(k′

1, . . . , k′
2n−1) = 0. (40)

Note that the L operation acts on the terms with positive or scaling dimension; as

RŴ
(h)
4,σ ,ω(k′

1, k′
2, k′

3) = Ŵ
(h)
4,σ ,ω(k′

1, k′
2, k′

3) − Ŵ
(h)
4,σ ,ω(0, 0, 0) (41)

it is easy to check that R decreases the size of RŴ
(h)
4,σ ,ω by a factor γ h−h′

< 1, where

h′ is the highest scale among the propagators contracted in Ŵ
(h)
2n,σ ,ω and h is the scale

of the external fields: such improvement in the scaling dimension of the relevant or
marginal terms makes convergent the sums over scales. Note also that L = 0 on the
monomial multiplying ψ+

ω,σψ−
−ω,σψ+

ω,σ ′ψ
−
−ω,σ ′ ; indeed they behave as irrelevant terms (despite

dimensionally marginal) when pF 	= π
2 .

In the same way, we split B(h)(ψ(�h), φ) as LB(h) +RB(h), where L is defined as its action
on the kernels of B(h) in the following way: LB̂

(h)
m,2n = 0, except when m = 1, n = 1, and

LB̂
(h)
1,2(p, k′) = B̂

(h)
1,2(0, 0). (42)

We include the quadratic part of LV(h) given by zh

∫
dk

∑
ω,σ (−ik0 + ω sin k′ + c0(cos k′ −

1))ψ̂+
k′,ω,σ ψ̂−

k′,ω,σ in the free integration; calling

LV̄h = LVh − zh

∫
dk

∑
ω,σ

ψ+
k′,ω,σ (−ik0 + ω sin k′ + c0(cos k′ − 1))ψ−

k′,ω,σ , (43)

we obtain

eS(h+1)(φ)

∫
PZ̃h−1,Ch

(dψ(�h)) e−LV̄h(
√

Zhψ
(�h))

× e−RV(h)(
√

Zhψ
(�h))+LB(h)(

√
Zhψ

(�h),φ)+RB(h)(
√

Zhψ
(�h),φ), (44)

where

Z̃h−1(k) = Zh

(
1 + zhC

−1
h (k)

)
. (45)

After rescaling the fields the rhs of (44) can be rewritten (up to a constant) as

eS(h+1)(φ)

∫
PZh−1,Ch−1(dψ(�h−1))

∫
PZh−1,f̃

−1
h

(dψ(h)) e−V̂(h)(
√

Zh−1ψ
(�h))+B̂(h)(

√
Zh−1ψ

(�h),φ), (46)

where

Zh−1 = Zh(1 + zh); f̃ h(k′) = fh(k′)
[

1 +
zhfh+1(k′)

1 + zhfh(k′)

]
(47)

and

LV̂(h)(ψ) = γ hνhFν + δhFδ +
∑
σ,σ ′

[
g1,hF

(h)
1,σ,σ ′ + g2,hF

(h)
2,σ,σ ′ + g4,hF

(h)
3,σ,σ ′

]
, (48)

where

Fν = 1

Lβ

∑
k′∈D

∑
ω,σ

ψ̂+
k′,ω,σ ψ̂−

k′,ω,σ

Fδ = 1

Lβ

∑
k′∈D

∑
ω,σ

(ωv0 sin k′ + c0(cos k′ − 1))ψ̂+
k′,ω,σ ψ̂−

k′,ω,σ
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F1,σ,σ ′ =
∑

ω

∫
dxψ+

x,ω,σ ψ−
x,−ω,σ ψ+

x,−ω,σ ′ψ
−
x,ω,σ ′ (49)

F2,σ,σ ′ =
∑

ω

∫
dxψ+

x,ω,σ ψ−
x,ω,σ ψ+

x,−ω,σ ′ψ
−
x,−ω,σ ′

F4,σ,σ ′ =
∑

ω

∫
dxψ+

x,ω,σ ψ−
x,ω,σ ψ+

x,ω,σ ′ψ
−
x,ω,σ ′ ,

and

g2,h =
[

Zh

Zh−1

]2

Ŵ h
4,ω,ω,−ω,−ω(0, 0, 0), g1,h =

[
Zh

Zh−1

]2

Ŵ h
4,ω,−ω,ω,−ω(0, 0, 0),

g4,h =
[

Zh

Zh−1

]2

Ŵ h
4,ω,ω,ω,ω(0, 0, 0), γ hνh = Zh

Zh−1
Ŵ h

2 (0)

δh = Zh

Zh−1

[
∂k0Ŵ

h
2 (0) − ∂kŴ

h
2 (0)

]
.

By construction

ν0 = ν + O(U), δ0 = δ + O(U), g1,0 = Uv̂(2pF ) + O(U 2),
(50)

g2,0 = Uv̂(0) + O(U 2), g4,0 = Uv̂(0) + O(U 2).

In writing (49), we have used that the kernels in the effective potential with four external
lines

∫
dxψ+

x1,ω1,σ
ψ−

x2,ω2,σ
ψ+

x3,ω3,σ ′ψ
−
x4,ω4,σ ′W

h
σ,σ ′(x) are such that Wh

σ,σ = Wh
σ,−σ by the spin

symmetry of the Hubbard model.
Moreover,

LB̂(h)(
√

Zh−1ψ
(�h), φ) = 1√

2
Z

(2,ε)
h−1

∫
dxφε(x)

∑
σ,ω

(σ )εψ(�h)+
x,ω,σ ψ(�h)−

x,ω,σ

+
1√
2
Z

(1,ε)
h−1

∫
dxφε(x)

∑
σ,ω

(σ )ε e2iωpF ψ(�h)+
x,ω,σ ψ

(�h)−
x,−ω,σ , (51)

where, if i = 1, 2, Z
(i)
h−1,ε = B̂

h(i)

1,2;ε(0, 0) and

Z
(i)
h−1,ε

Z
(i)
h,ε

= 1 + z
(i)
h,ε, (52)

with z
(i)
h,ε = O(�vk). In (51), we have used that V is invariant under spin reflection while

the source term in (9) acquires a sign (σ )ε. We integrate then ψh and the description of the
iterative procedure is then completed.

The above procedure generates an expansion for S
(h)
2n,σ ,ω,W

(h)
2n,σ ,ω, B

(h)

m,2n;ω,σ in terms of
the running coupling constants �vh, �vh+1, . . . , �v0, with �vk = (νk, δk, g1,k, g2,k, g4,k).

It is possible to prove, (see theorem (3.12) of [2] to which we refer for a detailed proof)
the following result.

Theorem. There exists εh such that, for pF 	= π
2 , S

(h)
2n,σ ,ω,W

(h)
2n,σ ,ω, B

(h)

m,2n;ω,σ are analytic as
functions of the running coupling constants �vh, �vh+1, . . . , �v0 for supk�h |�vk| � εh and∫

dx
∣∣W(h)

2n,σ ,ω(x)
∣∣ � LβCnεn

hγ
−h(−2+n)

(53)∫
dx dy

∣∣B(h)

m,2n;ω,σ

∣∣(x, y) � LβCn+mεn+m
h γ −h(−2+n+m).
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The key technical ingredient to prove the above bounds is the following classical formula
for the fermionic truncated expectations:

ET
h (ψ̃(P1) · · · ψ̃(Pn)) =

∑
T

(∏
l∈T

g
(h)
l

) ∫
dPT (t) detGT , (54)

where T is a set of lines form a tree between the clusters of points P1, . . . , Pn, dPT is a suitable
normalized probability measure. If ET

h is the truncated expectation with respect to ψh, by
the Gram–Hadamard inequality for determinants it follows that |detGT | � γ (

∑
i |Pi |−n)h. The

determinant bound allows us to exploit the cancellations due to the anticommutativity; there
are no n!, destroying the convergence, which one could find bounding each Feynmann graph.

From the above construction it is clear that �vh verify an iterative equation of the form

�vh−1 = �βh
�v(�vh, �vh+1, . . . , �v0), (55)

which is the analogue of the beta function in our exact RG analysis; note, however, that the
lhs of (55) does not depend only on �vh but also on the running coupling constants at any
scale �vh, �vh+1, . . . , �v0. The function �βh

�v is a power series in �vh+1, . . . , �v0 which is convergent
if supk�h |�vk| � εh. Note also that �βh

�v is given by a sum of terms obtained from truncated
expectations at different scales from h to a certain scale k � h; with respect to bound (53),
each of such terms is bounded by an extra factor γ

1
2 (h−k). This property is called short memory

and explains that contributions to the running coupling constants at a scale h coming from the
scale much greater than h are exponentially depressed, see [2] for details.

The boundedness of the flow of the running coupling constants �vh in the repulsive Hubbard
model is a consequence of intricate cancellations at all orders in the beta function proved in
[8], extending a previous result for spinless fermions found in [3]. While it is not difficult
to check such cancellations at first orders, the cancellations must be proved at all orders in
order to prove the boundedness of the flow, and this is done by implementing at each RG
iteration Schwinger–Dyson equations and (modified) ward identities based on local-phase
transformation and taking into account the effect of the cut-offs introduced in the RG analysis.

The following result has been proved in [8] (see theorem 4 of [8]).

Theorem. For Uv̂(2pF ) > 0 and small enough it is possible to choose ν = O(U) and
δ = O(U) such that, for any h, |νh| � CUγ

h
2 , |δh| � CUγ

h
2 and for a positive constant a,

|g2,h + g1,h/2 − g2,0 − g1,0/2| � CU 2 |g4,h − g4,0| � CU 2

(56)

0 < g1,h � g1,0

1 − a/3g1,0h
|�vh−1 − �vh| � C

[[
g1,0

1 − a/3g1,0h

]2

+ Uγ
h
2

]
.

The above equation explains that g1,h is vanishing as h → −∞ while g2,h, g4,h remains close
to their initial value.

Remark. The above analysis says that iterating the RG one gets an effective theory of
spinning chiral fermions with essentially linear (up to corrections vanishing iterating the
RG) dispersion relation, and three quartic effective interactions, with couplings g1,h, called
the backward interaction, and g2,h, g4,h, called the forward interaction. Repeating a similar
analysis for the Mattis model, one gets a similar effective theory with νh = δh = g1,h = 0.
Note that the forward scattering terms are invariant under separate phase transformations for
each chirality and spin, that is ψ±

ω,σ → e± iαω,σ ψ±
ω,σ with αω,σ being an arbitrary function of

ω and σ ; in contrast the backward interaction is invariant only under phase transformations
independent from the chirality; the solvability of the Mattis model is connected to the absence
of backward scattering interactions.



The absence of logarithmic divergences in the spin and charge density correlations 3357

2.3. The effective renormalizations

We have now to discuss the flow of the effective renormalizations Zh,Z
(1)ε
h , Z

(2)ε
h . The flow

equation for Zh is

Zh−1 = Zh +
0∑

k=h

βh,k
z (�vh, �vh+1, . . . , �v0)Zk ≡ Zh

(
1 + βh

z

)
, (57)

with
∣∣βh,k

z

∣∣ � CU 2γ
1
2 (h−k); from an explicit computation, if a is a constant and using that

|νh| � CUγ
h
2 , |δh| � CUγ

h
2 ,

βh
z = a

(
g2

2,h + g2
4,h + g2

2,h − g1,hg2,h

)
+ O(U 2|g1,h|) (58)

so that, by (57), (58),

γ −c1U
2h � Zh � e−c2U

2h. (59)

The flow equation for Z
(1),ε
h−1 is given by

Z
(i),ε
h−1

Zh−1
= Z

(i),ε
h

Zh

[
1 + βh

i (�vh, �vh+1, . . . , �v0)
]
, (60)

with

1 + βh
i = 1 + z

(i)
h

1 + zh

, (61)

and, if b is a constant

βh
1 = ag2,h − ag1,h + O(U 2) + O(Uγ

h
2 ) (62)

so that, using g2,h > g1,h as v̂(0) > v̂(2pF ):

γ −c1Uh � Z
(1),ε
h � e−c2Uh. (63)

The analysis of Z
(2),ε
h−1 is more delicate; the main point of the present paper is indeed to prove

that

Z
(2),ε
h

Zh

= 1 + O(U), (64)

which says that the density renormalization Z
(2),ε
h is proportional to the wavefunction

renormalization Zh.

Remark. Equation (64) is in contrast with [6] in which it was found that Z
(2)ε
h /Zh is diverging

as h → −∞ as O(U 2|h|).
In order to prove (64) we can decompose βh

2 in (60) as sum of two terms; defining
�gk = (g1,k, g2,k, g4,k) we have

βh
2 (�vh, �vh+1, . . . , �v0) = βh

2,a(�gh, �gh+1, . . . , �g−1) + Rh
2 (�vh, �vh+1, . . . , �v0), (65)

where we include in βh
1,a only the terms contributing to βh

1 obtained contracting the quartic

part of LV(k), k � −1 with the dominant part of the propagator g
(k)
L (x), k � −1, in R

(h)
2 are the

remaining terms. One can check that such decomposition respects the determinant structure
of the truncated expectations, see [2].

The following bound holds:∣∣Rh
2 (�vh, �vh+1, . . . , �v0)

∣∣ � CUγ
h
2 . (66)
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The above bound follows from the fact that by the definition Rh
2 is given by a sum of terms

either obtained contracting the quadratic part of LV(k) at the same scale k, or such that the
contraction has been done through the propagator r(k)

ω (x); by using the short memory property,
the fact that |νk|, |δk| � CUγ

k
2 and bound (34), (66) follows.

As Rh
2 is summable with h, the proof of (64) is reduced to the proof of summability of

βh
2 ; we can write

βh
2,a(�gh, �gh+1, . . . , �g−1) = βh

2,a(�gh, �gh, . . . , �gh) +
∑
k�h

D2
h,k(�gh, �gh+1, . . . , �g−1), (67)

with

D2
h,k(�gh, �gh+1, . . . , �g−1) = βh

2,a(�gh, .., �gh, �gk..., �g−1) − βh
2,a(�gh, .., �gk+1, �gk..., �g−1). (68)

By the short memory property and (56)∑
k�h

∣∣D1
h,k

∣∣ � C1U
∑
k�h

γ
h−k

2 | �gh − �gk| � C2U
∑
k�h

γ
h−k

2

h∑
i=k

[
1

k2
+ Uγ

k
2

]
� C3U

∑
k�h

γ
h−k

2 |h − k| 1

k2
� C4U

∑
k�h

γ
h−k

4
1

k2
� C5U

h2
, (69)

so that the second addend of the rhs of (69) is summable.
The first addend of the rhs of (69) can be written as

βh
2,a(�gh, �gh, . . . , �gh) =

∑
m1,m2,m3

ch
m1,m2,m3

(g1,h)
m1(g2,h)

m2(g4,h)
m2 (70)

and, by the short memory property, ch
m1,m2,m3

= cm1,m2,m3 + O(γ
h
2 ). The coefficients cm1,m2,m3

are obtained by the truncated expectations of m
p

1 interaction F1,σ,σ ,mo
1 interaction F1,σ,−σ ,m

p

2
interaction F2,σ,σ ,mo

2 interaction F2,σ,−σ and m3 interaction F4,σ,−σ so that we can write

cm1,m2,m3 =
∑

mo
1+m

p

1 =m1

∑
mo

2+m
p

2 =m2

∑
m3

cmo
1,m

p

1 ,mo
2,m

p

2 ,m3
. (71)

Note that

c0,m2,m3 =
∑

mo
2+m

p

2 =m2

∑
m3

c0,0,mo
2,m

p

2 ,m3
, c1,m2,m3 =

∑
mo

2+m
p

2 =m2

∑
m3

c0,1,mo
2,m

p

2 ,m3
. (72)

The second part of (72) follows from the fact that there are no possible contributions obtained
contracting ψ+

ω,σψ−
−ω,σ ψ+

−ω,−σ ψ−
ω,−σ and any number of F2, F4, as the fields to be contracted

would be, if the external lines have index (ω, σ ), n1 + 1 − 2 fields (ω, σ ), n2 + 1 fields
(ω,−σ), n3 + 1 fields (−ω, σ), n4 + 1 fields (−ω,−σ), with n1, n2, n3, n4 even, as they are
the number of fields coming from the interactions Fk

2 and Fk
4 which are bilinear in the densities

of fermions of label (ω′, σ ′).
Note finally that

Fh
1,σ,σ = −Fh

2,σ,σ , (73)

and this implies

c0,1,mo
2,m

p

2 ,m3
= −c0,0,mo

2,m
p

2 +1,m3
. (74)

We will prove in section 2 that, for any m2,m3,

c0,m2,m3 = 0, c1,m2,m3 = 0. (75)
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Hence

ec2U
∑0

k=h[γ
k
2 +|k|−2] �

∣∣Z(2)ε
h−1

∣∣
|Zh−1| � ec1U

∑0
k=h[γ

k
2 +|k|−2] (76)

from which (64) follows.

Remark. Even if the backward scattering interaction g1,h →h→−∞ 0, one also needs the
second part of (75) to prove the finiteness of Z

(2)ε
h

/
Zh; if c0,m2,m3 = 0 but c1,m̄2,m̄3 = 0 (but

it is vanishing for all m2 + m3 < m̄2 + m̄3), one would obtain that Z
(2)ε
h /Zh is diverging as

h → −∞ as O(Um̄2+m̄3 |h|).

2.4. Density correlations

From the previous analysis, we have obtained a convergent expansion for the density
correlations, which can be written as

Nε(x) = cos(2pF x)Ha
ε (x) + Hb

ε (x) + Hc
ε (x), (77)

where

Ha
ε (x) =

0∑
h=−∞

[
Z

(1),ε
h

Zh

]2 [∑
ω=±

g(h)
ω (x)g

(h)
−ω(−x) + �̄(h)

a (x)

]
(78)

Hb
ε (x) =

0∑
h=−∞

[
Z

(2),ε
h

Zh

]2 [∑
ω=±

g(h)
ω (x)g(h)

ω (−x) + �̄
(h)
b (x)

]
(79)

Hc
ε =

0∑
h=−∞

�̄(h)
c (x), (80)

and where we include in �̄(h)
a,ω(x), �̄

(h)
b,ω(x) only the terms obtained contracting the quartic part

of LV(k), k � 0 with propagators g
(h)
L (r) and with two vertices Z

(1)
k or Z

(2)
k respectively; it

holds that for i = a, b,∣∣∂n�̄
(h)
a,b(x)

∣∣ � γ (2+n)hU
CN

1 + (γ h|x|)N (81)

as a consequence of the fact that all the oscillating factor e± ipF xi cancel out as
∑

i εiωi in the
quartic monomials in LV(k). Moreover,∣∣�̄(h)

c (x)
∣∣ � γ

5
2 hU

CN

1 + (γ h|x|)N , (82)

and the extra γ
h
2 in the above bound is due to the short memory property, together with the

fact that �̄(h)
c (x, y) is the sum of terms containing or a νk, δh (remember that |νk| � CUγ

k
2 ,

|δk| � CUγ
k
2 ), or r(k)

ω (x − y) (whose bound (34) has a γ
k
2 more respect to g(k)

ω (x − y)) or
g(u.v.)

ω (x − y). Assuming (64), we can obtain the properties of the Fourier transform of Nε(x).
From (78), (81) and (82)∣∣Hc

ε (x)
∣∣ � CU

1 + |x| 5
2

,
∣∣∂nHa

ε (x)
∣∣ � C

1 + |x|2−ηε+n
,

∣∣∂nHb
ε (x)

∣∣ � C

1 + |x|2+n
, (83)

with ηε = O(U) and positive and Ha
ε (x) = Ha

ε (−x),Hb
ε (x) = Hb

ε (−x); this is due
to the fact that Ha

ε (x) and Hb
ε (x) are sum over an even number of odd propagators
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g
(h)
ω,L(x) = −gω,L(h)(−x). From (83), we see that Ha

ε (x) and Hb
ε (x) are free of oscillations,

and the only oscillating factor in the first two addends of (77) is the prefactor cos 2pF x in the
first addend; on the other hand, Hc

ε (x) has oscillating factors with period 2π
2npF

with any n but
it has a much faster decay for |x| → ∞. The asymptotic formula (11) then follows.

We discuss now the properties of the one-dimensional Fourier transform of Nε(x)|x0=0.
Let us consider, for i = a, b,H i

ε (x) ≡ Hi
ε (x, x0); the Fourier transform of Hi

ε (x, 0) is of
course bounded by (83) and its derivative is given by∣∣∣∣∫ dx eikx ixH i

ε (x, 0)

∣∣∣∣ �
∣∣∣∣1

k

∫
dx[eikx − 1]∂x

[
xH i

ε (x, 0)
]∣∣∣∣

�
∣∣∣∣1

k

∫
|x|�|k|−1

dx[eikx − 1]∂x

[
xH i

ε (x, 0)
]

+

∣∣∣∣1

k

∫
|x|�|k|−1

dx[eikx − 1 − ikx]∂x

[
xH i

ε (x, 0)
]∣∣∣∣, (84)

where we used the fact that ∂x

[
xH i

ε (x, 0)
]

is an even function of x. Hence, if |k| �
1,

∣∣ ∫ dx eikxxH i
ε (x, 0)

∣∣ � C|k|−1, while, if 0 < |k| � 1:∣∣∣∣∫ dx eikxxHa
ε (x, 0)

∣∣∣∣ � C[1 + |k|−ηε ] (85)

and ∣∣∣∣∫ dx eikxxHb
ε (x, 0)

∣∣∣∣ � C. (86)

3. Ward identities with cut-off

3.1. The auxiliary model

In order to complete the proof of (64) we have still to prove (75) for any m2,m3.
Let us recall first how the proof of the analogue of (64) was achieved in the spinless

Hubbard model, see [2, 3]. The analysis of the spinless Hubbard model is done
through a multiscale analysis similar to the one of the previous sections, with the only
difference that the quartic part of LV(h) is given by λh

∫
dxψ+

x,+ψ
−
x,+ψ

+
x,−ψ−

x,−, and that,
for any h, λh = λ0 + O

(
λ2

0

)
; moreover the first addend of the rhs of (51) is replaced by

Z
(2)
h−1

∫
dxφ(x)

∑
ω ψ

(�h)+
x,ω ψ

(�h)−
x,ω . Again Z

(2)
h

Zh
verifies a flow equation similar to (60) with βh

2

which can be decomposed as in (65), (67), with βh
2,a(λh, λh, . . . , λh) = ∑

m ch
mλm

h . In [3],

it was proved that ch
m = cm + O(γ

h
2 ) and cm = 0, that is βh

2 is asymptotically vanishing,
and from this property the analogous of bound (64) trivially follows. The proof that cm = 0
was obtained, see [3], through the introduction of an auxiliary model directly expressed in
terms of chiral fermions ψ±

x,ω, ω = ±, with linear dispersion relation, ultraviolet and infrared
cut-offs and interaction equal to λ0

∫
dxψ+

x,+ψ
−
x,+ψ

+
x,−ψ−

x,−. The auxiliary model is chosen
to be essentially equivalent in the infrared to the spinless Hubbard model; more exactly, the
correlations of the two models can be expressed in terms of a set of quartic running coupling
constants and effective renormalizations which have the same beta function up to corrections
O(γ

h
2 ); in particular the coefficients cm are the same in the two models. On the other hand,

the advantage of the auxiliary model, with respect to the Hubbard model, is that it is exactly
invariant under the global phase symmetry

ψ±
x,ω → e± iαωψ±

x,ω, (87)
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and from such invariance a ward identity can be derived for the reference model which explains
that Z

(2)ε
h and Zh are essentially proportional; this property implies that cm = 0 for any m.

In the spinning case, we could try to follow the same strategy introducing an auxiliary
model with quartic running coupling constants and effective renormalizations with beta
functions asymptotically equal to those of the spinning Hubbard model; such a model
would describe chiral fermions with linear dispersion relation, momentum cut-off, and local
interaction given by the quartic part of LV(0) (48); the problem is however that LV(0) is not
invariant under the generalization to the spinning case of (87), namely

ψ±
x,ω,σ → e± iαω,σ ψ±

x,ω,σ . (88)

On the other hand, in the spinning case we do need to prove that cm1,m2,m3 = 0, for any
m1,m2,m3 in order to get (64), but the weaker property (75), as g1,h = O(h−1). We will
consider then the following auxiliary model, whose generating function is given by

eHε(φ,J ) =
∫

P(dψ) exp

(
−V(ψ) +

1√
2

∑
ω,σ

∫
dxφx,ε(σ )εψ+

ω,σ,xψ
−
ω,σ,x

+
∑
ω,σ

∫
dx[ψ+

ω,σ,xJ
−
ω,σ,x + J +

ω,σ,xψ
−
ω,σ,x]

)
, (89)

where

P(dψ) =
[ ∏

σ,ω=±

∏
k

dψ̂+
k,ω,σ dψ̂−

k,ω,σ

]
exp − 1

βL

∑
ω,σ

∑
k∈D

ψ̂+
k,ω,σCk(k)−1(−ik0 + ωk)ψ̂−

k,ω,σ

(90)

and Ck(k)−1 = ∑0
h=k fh(k) and

V(ψ) =
∑

σ

[
g

p

2,0F
(0)
2,σ,σ + go

2,0F
(0)
2,σ,−σ + g4,0F

(0)
3,σ,−σ

]
. (91)

The above model is apparently quite different with respect to the Hubbard model. It is not spin
symmetric, but it is invariant under the separate left and right phase transformations (88), while
such invariance is not verified (even asymptotically) in the Hubbard model for the presence of
the backward scattering. Despite such differences, from the analysis of (90) we will get the
proof of (75) for any m2,m3.

The multiscale integration of (89) can be performed as in for the Hubbard model, up to
some minor modification; after the scales 0,−1, . . . , h, h > k, are integrated one finds

eS(h+1)(φ,J )

∫
PZh−1,Ch−1(dψ(�h−1))

∫
PZh−1,f̃

−1
h

(dψ(h)) e−V̂(h)(
√

Zh−1ψ
(�h))+B̂(h)(

√
Zh−1ψ

(�h),φ,J ),

(92)

where PZh,Ch
(dψ(�h)) is the Grassmann integration with propagator ĝ(�k)

ω (k) = 1
Zh

C−1
h,k

−ik0+ωk

and

LVh(ψ) =
∑

σ

[
go

2,hF
(h)
2,σ,−σ + g

p

2,hF
(h)
2,σ,σ + g4,hF

(h)
4,σ,−σ

]
(93)

and νh = δh = 0 by the oddness of the propagator ĝ(k)
ω (k) = −ĝ(k)

ω (−k); moreover,

LB(h)
(√

Zh−1ψ
(�h), φ, 0

) = Z̃
(2)ε
h−1

1√
2

∑
ω,σ

∫
dxφx,ε(σ )εψ+

ω,σ,xψ
−
ω,σ,x. (94)
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By a combination of ward identities and Dyson equation, it has been proved in [8] that for any
h � 0, there exists an ε such that, for a suitable constant C, if

∣∣gp

2,0

∣∣, ∣∣go
2,0

∣∣, ∣∣gp

4,0

∣∣ � ε̄:∣∣go
2,h − go

2,0

∣∣, ∣∣gp

2,h − g
p

2,0

∣∣, ∣∣gp

4,h − g4,0

∣∣ � Cε̄2. (95)

By the analogous of bounds (53), it is easy to derive the following expressions for the
correlations at the cut-off scale; if k̄1 = −k̄2 = k̄, |k̄1| = γ k and γ k is the infrared cut-off, if
�gh = go

2,h, g
p

2,h, g4,h and εk = suph�k | �gh|:〈
ρε,2k̄;ψ+

ω′,σ ′,k̄1
ψ−

ω′,σ ′,k̄2

〉
T

= Z
ε,(2)
k

(Zk)2

1

(Dω(k̄))2

(
(σ ′)ε√

2
+ O(εk)

)
;

(96)〈
ψ+

ω,σ,k̄1
ψ−

ω,σ,k̄1

〉 = 1

Zk

1

Dω(k̄)
(1 + O(εk)),

where Dω(k) = −ik0 + ωk and ρσ,p = 1
Lβ

∑
k

∑
ω ψ+

ω,σ,k+pψ
+
ω,σ,k and ρε,p =

1√
2

∑
ω,σ (σ )ερσ,p.

If �gk = (
go

2,h, g
p

2,h, g
p

4,h

)
, the effective renormalization Z

(2),ε
h verifies

Z
(2),ε
h−1

Zh−1
= Z

(2),ε
h

Zh

[
1 + βh

2 (�gh, �gh+1, . . . , �g0)
]

(97)

and

βh
2 (�gh, �gh+1, . . . , �g−1) = βh

2,a(�gh, �gh, . . . , �gh) + O(ε̄γ
h
2 ), (98)

with

βh
2,a(�gh, �gh, . . . , �gh) =

∑
n1,n2,n3

bh
n1,n2,n3

(
go

2,h

)n1
(
g

p

2,h

)n2
(
go

4,h

)n3 + O(γ
h
2 ), (99)

with bh
n1,n2,n3

= bn1,n2,n3 + O(γ
h
2 ). In the following section, we will find a ward identity,

based on the phase symmetry (88), relating
〈
ρε,2k̄;ψ+

ω′,σ ′,k̄1
ψ−

ω′,σ ′,k̄2

〉
T

with
〈
ψ+

ω,σ,k̄i
ψ−

ω,σ,k̄i

〉
,

with i = 1, 2; from such relation we will find the identity

Z
(2)ε
k

Zk

= 1 + O(εk). (100)

The compact support properties of the functions fj (k) used in the multiscale decomposition
imply that Z

(2)ε
k is essentially equal in the functional integral (89) with or without the infrared

cut-off γ k; hence it is easy to see that (100) implies

bn1,n2,n3 = 0 (101)

for any n1, n2, n3; by definition, with cmo
1,m

p

1 ,mo
2,m

p

2 ,m3
defined in (71),

c0,0,mo
2,m

p

2 ,m3
= bmo

2,m
p

2 ,m3
= 0 (102)

and, using (72), (74) and (75) follows.

3.2. Ward identities

It remains to prove (100), and this will be done by deriving a set of ward identities in the
auxiliary model.

By performing in Hε the local-phase transformation

ψ±
x,ω,σ → e± iαxψ±

x,ω,σ , ψ±
x,−ω,σ → ψ±

x,−ω,σ ,
(103)

ψ±
x,ω,−σ → ψ±

x,ω,−σ , ψ±
x,−ω,−σ → ψ±

x,−ω,−σ ,
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we find

Hε(0, J ) = log
∫

P(dψ) e− ∫
dxψ+

x,ω,σ (eiαx D e−iαx −D)ψ−
x,ω,σ −V +

∑
ε,ω′,σ ′ 	=ω,σ ψε

x,ω′,σ ′ J−ε

x,ω′ ,σ ′

× e
∫

dx(eiαx −1)ψ+
x,ω,σ J−

x,ω,σ +(e−iαx −1)J +
x,ω,σ ψ−

x,ω,σ ,

where Dψ±
x,ω,σ = 1

βL

∑
k e± ikxCk,0(k)(−ik0 + ωk)ψ±

x,ω,σ . We can write
∫

dxψ+
x,ω,σ (eiαxD

e−iαx − D)ψ−
x,ω,σ as∫

dxαx
[
ψ+

x,ω,σ Dψ−
x,ω,σ − (

Dψ+
x,ω,σ

)
ψ−

x,ω,σ + O(αx)
]
. (105)

Of course, the presence of the cut-off has the effect that ψ+
x,ω,σ Dψ−

x,ω,σ − (Dψ+
x,ω,σ )ψ−

x,ω,σ is
not simply equal to D(ψ+

x,ω,σ ψ−
x,ω,σ ). By making the derivative with respect to αx, Jx, Jy the

following ward identities are found:

Dω(p)
〈
ρp,ω,σ ;ψ+

k1,ω′,σ ′ψ
−
k2,ω′,σ ′

〉
T

= δω,ω′δσ,σ ′
[〈
ψ+

k1,ω′,σ ′ψ
−
k1,ω′,σ ′

〉
− 〈

ψ+
k2,ω′,σ ′ψ

−
k2,ω′,σ ′

〉]
+

〈
δρω,σ,p;ψ+

k1ω′,σ ′ψ
−
k2,ω′,σ ′

〉
, (106)

where

δρω,σ,p = 1

(βL)2

∑
k,p

Cω(k, p)ψ+
k+p,ω,σ ψ−

k,ω,σ . (107)

and

Cω(k+, k−) = (Ck,0(k−) − 1)Dω(k−) − (Ck,0(k+) − 1)Dω(k+)

with respect to the formal ward identities valid in a theory in the absence of cut-offs, we have
in (106) the presence of a correction term (the last one) due to the fact that the cut-offs break
the invariance under local-phase transformation.

Remark. The validity of (106) can be checked at lowest orders from the following trivial
identity:

g[k,0]
ω (k)g[k,0]

ω (k + p) = g[k,0]
ω (k) − g[k,0]

ω (k + p)

Dω(p)
− g[k,0]

ω (k)g[k,0]
ω (k + p)

Cω(k, k + p)

Dω(p)
(108)

replacing the well-known identity valid in the absence of cut-off

Dω(p)

Dω(k)Dω(k + p)
= 1

Dω(k)
− 1

Dω(k + p)
. (109)

Neglecting the last addend in the rhs of (106), choosing k1 = −k2, |k1| = γ k and using (96)
one immediately gets (100); however the presence of the last term (which is not smaller than
the others) could prevent to derive such relation.

We prove now the following crucial correction identity:〈
δρp,ω,σ ;ψ+

k,ω′,σ ′ψ
−
k+p,ω′,σ ′

〉 = Hω,σ,ω′,σ ′(k, p)

+
∑
ω′′,σ ′′

[
ν1

ω,σ ;ω′′,σ ′′p + iν0
ω,σ ;ω′′,σ ′′p0

]〈
ρp,ω′′,σ ′′ ;ψ+

k,ω′,σ ′ψ
−
k+p,ω′,σ ′

〉
, (110)

where ν1
ω,σ ;ω′′,σ ′′ , ν

0
ω,σ ;ω′′,σ ′′ are real and such that |νω,σ ;ω′′,σ ′′ | � Cε̄ and, if k̄1 = −k̄2, |k̄1| =

γ k, p̄ = k̄1 − k̄2:

|Hω,σ,ω′,σ ′(k̄1, p̄)| � Cε̄
γ −k

Zk

. (111)
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Remark. In the spinless case, an analogous equation holds, see [3], with the identity
ν1

ω;ω′′ = ν0
ω;ω′′ due to symmetry reasons.

In order to prove (110), we write Hω,σ,ω′,σ ′ in (110) as a functional integral, p = k1 − k2:

Hω,σ,ω′,σ ′(k1, p) = ∂3

∂φp,ω,σ ∂J−
k1,ω′,σ ′∂J +

k2,ω′,σ ′
W̃(φ, J )|J=φ=0, (112)

where

W̃(φ, J ) = log
∫

P(dψ) e−V −∑
ε,ω,σ ψε

x,ω,σ J−ε
x,ω,σ eT̄0,ω,σ −∑

ω′,σ ′ [ν1
ω,σ ;ω′,σ ′p+iν0

ω,σ ;ω′,σ ′p0]T̄ω,σ ;ω′,σ ′
, (113)

with

T̄0,ω,σ (ψ) = 1

(βL)2

∑
k,p

φε
p,ωCω(k, k − p)ψ+

k,ω,σ ψ−
k−p,ω,σ ≡ 1

βL

∑
p 	=0

φ(p)δρp,ω,σ ,

(114)
T̄ω,σ ;ω′,σ ′(ψ) = 1

(βL)2

∑
k,p

Jp,ω,σψ+
k,ω′,σ ′ψ

−
k−p,ω′,σ ′ .

We perform again a multiscale analysis for (113) (for more details in the spinless case, see
[3]). We shall use some properties of the operator Cω(k, k−p). Let us consider first the effect
of contracting both ψ̂ fields of δρ on the same or two different scales; hence, we have to study
the quantity

�(i,j)
ω (k+, k−) = g(i)(k+)g(j)(k−)Cω(k+, k−) = 0 k < i, j < 0, (115)

where p = k+ − k−. The crucial observation is that

�(i,j)
ω (k+, k−) = 0, if k < i, j < 0, (116)

since C−1
k,0(k

±) = 1, if k < i, j < 0. Let us then consider the cases in which �
(i,j)
ω (k+, k−) is

not identically equal to 0. Since �
(i,j)
ω (k+, k−) = �

(j,i)
ω (k−, k+), we can restrict the analysis

to the case i � j . We define u0(k) = 0 if |k| � 1 and u0(k) = 1−f0(k) if 1 � |k|. Moreover,
we define uk(k) = 0 if |k| � γ k and uk(k) = 1 − fk(k) if |k| � γ k .

Then we get, for |p| � γ h,

�(0,0)
ω (k+, k−) =

[
f0(k+)

Dω(k+)
u0(k−) − f0(k−)

Dω(k−)
u0(k+)

]
, (117)

�(k,k)
ω (k+, k−) = 1

Z̃k−1(k+)Z̃k−1(k−)

[
fk(k+)uk(k−)

Dω(k+)
− uk(k+)fk(k−)

Dω(k−)

]
, (118)

�(0,k)
ω (k+, k−) = 1

Z̃k−1(k−)

[
f0(k+)uk(k−)

Dω(k+)
− fk(k−)u0(k+)

Dω(k−)

]
, (119)

�(0,j)
ω (k+, k−) = − 1

Zj−1

f̃ j (k−)u0(k+)

Dω(k−)
, k < j < 0, (120)

�(i,k)
ω (k+, k−) = 1

Z̃k−1(k−)Zi−1

f̃ i (k+)uk(k−)

Dω(k+)
, j = k < i � −1. (121)

As an easy consequence of the above equations, one can write, for 0 � j > k,

�(0,j)
ω (k+, k−) = pS(j)

ω (k+, k−), (122)
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where S
(j)

ω,i(k
+, k−) are smooth functions such that∣∣∂m+

k+ ∂
mj

k− S
(j)

ω,i(k
+, k−)

∣∣ � Cm0+mj

γ −j (1+mj )

Zj−1
. (123)

Finally, it is easy to see that, if 0 > i � k,∣∣�(i,k)
ω (k+, k−)

∣∣ � C|p|γ −(i−k) γ
−k−i

Zi−1
. (124)

Note that, in the rhs of (124), there is apparently a Z−1
k−1 factor missing, which is a consequence

of the fact that Z̃k−1(k) = 1 for |k| � γ k−1. Note also the presence in the bound of the extra
factor γ −(i−k), with respect to the dimensional bound; it will allow us to avoid renormalization
of the marginal terms containing �(i,k). After the integration of ψ0 we get an expression like
(37), and the terms linear in J and quadratic in ψ in the exponent will be denoted by K

(−1)
φ ;

we write K
(−1)
φ = K

(a,−1)
φ + K

(b,−1)
φ , where K

(a,−1)
φ was obtained by the integration of T̄0 and

K
(b,−1)
φ from the integration of T̄ . We can write K

(a,−1)
φ as

K
(a,−1)
φ =

∑
ω

∫
dxφx,ω,σ

{
T̄0,ω,σ +

∑
ω̃,σ̃

∫
dy dz

[
F

(−1)

2,ω,σ ;ω̃,σ̃ (x, y, z)

+ F
(−1)

1,ω,σ ;ω̃,σ̃ (x, y, z)δω,ω̃δσ,σ̃

][
ψ+

y,ω̃,σ̃ ψ−
z,ω̃,σ̃

]}
, (125)

where F
(−1)

2,ω,σ ;ω̃,σ̃ and F
(−1)

1,ω,σ ;ω̃,σ̃ represent the terms in which both or only one of the fields in
δρp,ω,σ , respectively, are contracted. Both contributions to the rhs of (125) are dimensionally
marginal; however, the regularization of F

(−1)

1,ω,σ ;ω̃,σ̃ is trivial, as it is of the form

F
(−1)

1,ω,σ ;ω̃,σ̃ (k+, k−) = [[Ck,0(k−) − 1]Dω(k−)ĝ(0)
ω (k+) − u0(k+)]G(2)

ω (k+) (126)

or the similar one, obtained exchanging k+ with k−. By the oddness of the propagator in the
momentum, G(2)

ω (0) = 0, hence we can regularize such term without introducing any local
term, by simply rewriting it as

F
(−1)

1,ω,σ ;ω̃,σ̃ (k+, k−) = [G(2)
ω (k+) − G(2)

ω (0)][(Ck,0(k−) − 1)Dω(k−)ĝ(0)
ω (k+) − u0(k+)], (127)

F
(−1)

2,ω,σ ;ω̃,σ̃ can be written as

F
(−1)

2,ω,σ ;ω̃,σ̃ = 1

(βL)2

∑
k,p

φp,ω,σ [p0iW0;ω,σ,ω′,σ ′(k, k + p)

+ pW1;ω,σ,ω′,σ ′(k, k + p)]ψ+
k,ω′,σ ′ψ

−
k+p,ω′,σ ′ , (128)

and we define the localization as

LF
(−1)

2,ω,σ ;ω̃,σ̃ = 1

(βL)2

∑
k,p

[ip0W0;ω,σ,ω′,σ ′(0, 0) + pW1;ω,σ,ω′,σ ′(0, 0)]ψ+
k,ω′,σ ′ψ

−
k+p,ω′,σ ′ . (129)

Note that W0;ω,σ,ω′,σ ′(0, 0) and W1;ω,σ,ω′,σ ′(0, 0) are real. As a consequence of the above
definition

LK
(−1)
φ = T̄0,ω,σ (ψ(�−1)) +

∑
ω′,σ ′

[
ν1

−1;ω,σ ;ω′,σ ′p + iν0
−1;ω,σ ;ω′,σ ′p0

]
T̄ω,σ ;ω′,σ ′(ψ(�−1)). (130)

The above integration procedure can be iterated with no important differences up to scale k+1.
In particular, for all the marginal terms such that one of the fields in T̄0,ω,σ is contracted at
scale j , we put R = 1; in fact the second field has to be contracted at scale k and, by (121),
the extra factor γ k−j has the effect of automatically regularizing such contributions.
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να
j−1;ω,σ ;ω′,σ ′ verify, for k + 1 � j � −1, α = 0, 1, the following recursive equation:

να
j−1;ω,σ ;ω′,σ ′ = να

j ;ω,σ ;ω′,σ ′ + βα
j ;ω,σ ;ω′,σ ′(�gj , νj . . . , �g0, ν0), (131)

with

βα
j ;ω,σ ;ω′,σ ′(�gj , νj . . . , �g0, ν0) = βα

j ;ω,σ ;ω′,σ ′(�gj , . . . , �g0)

+
∑

α′=0,1

∑
ω′′,σ ′′

0∑
j ′=j

να′
j ′;ω,σ ;ω′′,σ ′′β

α′;j,j ′
ω′,σ ′;ω′′,σ ′′(�gj , . . . , �g0) (132)

and∣∣βα
j ;ω,σ ;ω′,σ ′(�gj , . . . , �g0)

∣∣ � Cεγ
j

2 ,
∣∣βα;j,j ′

ω′,σ ′;ω′′,σ ′′(�gj , . . . , �g0)
∣∣ � Cε̄2γ − 1

2 |j−j ′ |. (133)

It is possible to find να
ω,σ ;ω′,σ ′ , so that∣∣να

j,ω,σ ;ω′,σ ′
∣∣ � c0εkγ

j

4 . (134)

This is done by choosing

να
ω,σ ;ω′,σ ′ = −

0∑
j=k

βα
j ;ω,σ ;ω′,σ ′(�gj , νj . . . , �g0, ν0), (135)

which implies

να
i;ω,σ ;ω′,σ ′ = −

∑
j�i

βα
j ;ω,σ ;ω′,σ ′(�gj , νj . . . , �g0, ν0). (136)

We consider the Banach space M of sequences νj,ω,σ ;ω′,σ ′ = {νj,ω,σ ;ω′,σ ′ }j�0 such that, for

any α,ω, σ , for a constant c,
∥∥να

j,ω,σ ;ω′,σ ′
∥∥ = supj�0 γ

−j

4

∣∣να
j,ω,σ ;ω′,σ ′

∣∣ � c. For any ν, ν ′ ∈ M,

| �gj (ν) − �g0| � Cε2
k | �gj (ν) − �gj (ν

′)| � Cεkγ
j

4 ‖ν − ν ′‖. (137)

We look for a fixed point of the operator T : M → M defined as

T(ν)j,ω,σ ;ω′,σ ′ =
∑
j�i

βα
j ;ω,σ ;ω′,σ ′(�gj , νj .., �g0, ν0). (138)

The operator T : M → M is a contraction. In fact T leaves M invariant as

|T(ν)j | �
∑
i�j

Cεkγ
i
4 � C1εγ

j

4 , (139)

and |T(ν)j − T(ν ′)j | � Cεkγ
j

4 ‖ν − ν ′‖.
Note finally that, from an explicit computation of (131), we get, if i = 1, 0,

νω,σ ;ω,σ = O
(
ε2
k

); νω,σ ;−ω,−σ = −ag2,o + O
(
ε2
k

)
(140)

νω,σ ;−ω,σ = −ag2,p + O
(
ε2
k

); νω,σ ;ω,σ = −ag4,o + O
(
ε2
k

)
,

where a is a suitable coefficient. In fact the lowest order contribution to νω,σ ;ω′,σ ′ can be
obtained from the graph represented in figure 3, whose local part is (in the limit L, β → ∞)

L
∫

dk
(2π)2

Cω(k, k − p)ĝ(�0)
ω (k)ĝ(�0)

ω (k − p), (141)

which is equal to, up to terms O(|γ − 1|)

−D−ω(p)
1

2

∫
dk

(2π)2

χ ′
0(|k|)
|k| = −D−ω(p)

1

4π

∫ ∞

1
dρχ ′

0(ρ) = D−ω(p)

4π
. (142)
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Figure 3. Lowest order contribution to νω,σ ;ω′,σ ′ ; the small circle represents Cω .

To Hω,σ,ω′,σ ′(k̄1, p̄) contribute then two kind of terms; the first kind of terms are obtained by
the contraction of terms

∑
ω′,σ ′[ν1

i;ω,σ ;ω′,σ ′p + iν0
i;ω,σ ;ω′,σ ′p0]T̄ω,σ ;ω′,σ ′ at a certain scale i, while

the second kind of terms are obtained by the contraction of terms T̄0,ω,σ (ψ(�−1)). The first

kind of terms are bounded by the dimensional bound γ −2k

Z2
k

(see (53)) times a factor γ
k−i

2 (for

the short memory property), times a factor γ
i
4 (from (134)); the final bound for such terms is

then

Cε|p̄|γ
−2k

Z2
k

γ
k
4 . (143)

The second kind of terms can have one of the two fields in δρ contracted at scale 0; such terms
again admit the bound Cε|p̄| γ −2k

Z2
k

γ
k
4 , for the short memory property. The last possibility is that

one of the two fields in δρ is contracted at scale k; in such a case we get the bound Cε|p̄| γ −2k

Zk
;

note that there are no contributions of this kind of order 0 in ε. This concludes the proof
of (111).

By combining (110) and (106) we obtain, if k̄1 = −k̄2, |k̄1| = γ k, p̄ = 2k̄1:(−ip̄0
(
1 − ν0

ω,σ ;ω,σ

)
+ ωp̄(1 − ν1

ω,σ ;ω,σ )
〈
ρω,σ,p̄;ψ+

ω′,σ ′,k̄1
ψ−

ω′,σ ′,k̄2

〉
T

= δω,ω′δσ,σ ′
[〈
ψ+

ω′,σ ′,k̄1
ψ−

ω′,σ ′,k̄1

〉 − 〈
ψ+

ω′,σ ′,k̄2
ψ−

ω′,σ ′,k̄2

〉]
+

∑
ω′′,σ ′′ 	=ω,σ

[
ν1

ω,σ ;ω′′,σ ′′ p̄ + iν0
ω,σ ;ω′′,σ ′′ p̄0

]〈
ρω′′,σ ′′,p̄;ψ+

ω′,σ ′,k̄1
ψ−

ω′,σ ′,k̄2

〉
T

+ Hω,σ,ω′,σ ′(k̄1, p̄), (144)

and after same algebra we find〈
ρω,σ,p̄;ψ+

ω′,σ ′,k̄1
ψ−

ω′,σ ′,k̄2

〉
T

= Rω,σ,ω′,σ ′(k̄1, p̄) +
[
δω,ω′δσ,σ ′aω,σ,ω′,σ ′(p̄)

+ δ−ω,ω′δσ,σ ′b−ω,σ,ω′,σ ′(p̄) + δω,ω′δ−σ,σ ′cω,−σ,ω′,σ ′(p̄)

+ δ−ω,ω′δ−σ,σ ′d−ω,−σ,ω′,σ ′(p̄)
][〈

ψ+
ω′,σ ′,k̄1

ψ−
ω′,σ ′,k̄2

〉 − 〈
ψ+

ω′,σ ′,k̄2
ψ−

ω′,σ ′,k̄2

〉]
(145)

and aω,σ,ω′,σ ′(p̄) = [Dω(p̄)]−1(1 + O(εk)),∣∣b−ω,σ,ω′,σ ′(p̄)|, |cω,−σ,ω′,σ ′(p̄)|, |d−ω,−σ,ω′,σ ′(p̄)| � Cεkγ
−k;

|Rω,σ,ω′,σ ′(p̄)| � Cεk

γ −2k

Zk

.
(146)

Summing over σ, ω and using (96), we get

Z
ε,(2)
k

Zk

γ −2k

Zk

(
(σ ′)ε√

2
+ O(εk)

)
=

∑
σ,ω

(σ )εRω,σ,ω′,σ ′ +
∑
σ,ω

(σ )ε[δω,ω′δσ,σ ′aω,σ,ω′,σ ′(p̄)

+ δ−ω,ω′δσ,σ ′b−ω,σ,ω′,σ ′(p̄) + δω,ω′δ−σ,σ ′cω,−σ,ω′,σ ′(p̄)
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+ δ−ω,ω′δ−σ,σ ′d−ω,−σ,ω′,σ ′(p̄)]
γ −k

Zk

(
1√
2

+ O(εk)

)
(147)

from which (100) follows.

4. Conclusions

We have proved the absence of logarithmic corrections in the spin and charge density
correlations of the repulsive Hubbard model at zero momentum; this proves that the divergences
at zero momentum, found in [7], are an artefact of their perturbative approach.

One cannot simply follow the strategy used to prove the analogous statement for the
spinless Hubbard model in [3]; while in the spinless case the Hubbard model is asymptotic to
a model which is invariant under separate chiral phase transformations, in the spinning case
it is asymptotic to a model which is not invariant under such transformations, at fixed spin.
To solve this problem we have used an auxiliary model which is not spin symmetric but it is
invariant under separate chiral and spin phase transformations, and we have used information
from such model to prove a set of cancellations in the Hubbard model, finally implying the
absence of logarithmic divergences.
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